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Abstract

The solution of the strain energy change of an infinite matrix due to the presence of one spherical particle or
cylindrical fiber surrounded by an inhomogeneous interphase is the basis of solving effective elastic moduli of cor-
responding composites based on various micromechanics models. In order to find out the strain energy change, the
composite sphere or cylinder, i.e., the spherical particle or cylindrical fiber together with its interphase, is replaced by an
effective homogeneous particle or fiber. Independent governing differential equations for each modulus of the effective
particle or fiber are derived by extending the replacement method [J. Mech. Phys. Solids 12 (1964) 199]. As far as the
strain energy changes of the infinite matrix subjected to various far-field stress systems are concerned, the present model
is simple. Meanwhile, FEM analysis is carried out for a verification, which shows that the model can lead to rather
accurate results for most practical interphases. Besides, to check the validity of the model further when the interactions
among composite cylinders exist, the two problems of an infinite matrix containing two composite cylinders and the
effective moduli of composites with the equilateral triangular distribution of composite cylinders are analyzed using
FEM. The FEM results show that the model is still rather accurate, especially for the case of interphase properties
varying between those of fiber and matrix. Therefore, composite spheres or cylinders are assumed as the effective
homogeneous particles or fibers and simple expressions of the effective moduli of composites containing the composite
spheres or cylinders are obtained. Furthermore, the present model is compared with some existing models that are
based on very complicated derivations.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Effective properties of two-phase composites have been extensively studied, and various micromechanics
models have been proposed (see the reviews by Willis, 1981; Hashin, 1983; Christensen, 1990; Weng, 1984,
1990; Zimmerman, 1991, 1996; Nemat-Nasser and Hori, 1993; Kachanov, 1992, 1994; Ju and Chen, 1994;
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Huang et al., 1994a,b). It is known that the elastic solution of an infinite matrix containing one inclusion is
the basis of these micromechanics models. Therefore, in order to use the micromechanics theories to obtain
the effective properties of composites involving a coating on particle/fiber or an inhomogeneous interphase
between particle/fiber and matrix, ones need to find the solution of the single inclusion problem involving a
coating or an inhomogeneous interphase (Hill, 1964; Hashin, 1972; Qiu and Weng, 1991; Jasiuk and
Kouider, 1993; Lutz and Zimmerman, 1996). Compared with the problem involving an inhomogeneous
interphase, the case of homogeneous coating is much easier, and some explicit solutions associated with
spherical particle or cylindrical fiber exist (Hill, 1964; Hashin and Rosen, 1964; Qiu and Weng, 1991). But
these solutions are rather lengthy when the far-field stresses are pure-shear. For the case of inhomogeneous
interphase, numerical procedures are usually required to solve the governing differential equations for the
elasticity problem of an infinite matrix containing one particle/fiber with the interphase (see Jasiuk and
Kouider, 1993). For a very special case, i.e., the radially symmetric problem of an infinite body containing a
composite sphere, Lutz and Zimmerman (1996) gave an infinite series form of solution, and then derived
the solution for the effective bulk modulus based on the Mori-Tanaka method. Ding and Weng (1999)
derived the bulk moduli of some particle- and fiber-reinforced composites with inhomogeneous matrix,
which is equivalent to the present case without matrix. But the corresponding problems involving a far-field
shear boundary condition have not been analytically or numerically solved.

For composites reinforced by a coated fiber, Hill (1964) pointed out that the fiber together with its
surrounding coating could be replaced by a homogeneous fiber when solving for the effective moduli, except
for the effective in-plane shear modulus. And the elastic properties of the effective homogeneous fiber can be
determined by a solution of effective moduli of two-phase composites. The solution is actually equivalent to
the composite cylinder assemblage model (Hashin and Rosen, 1964), the Mori-Tanaka solution (Weng,
1984), or the generalized non-interacting solution (Shen and Yi, 2001).

It is noted that the replacement method is very simple, whereas existing models for the case of
inhomogeneous interphase are very complicated. Thus, the authors attempt to extend the simple replace-
ment method so that the complicated cases involving shear boundary stresses and inhomogeneous inter-
phase can be covered. As a result, a set of independent governing differential equations is derived that
comprises the key part of the present model. In general, the model is an approximation for the complicated
cases. Therefore, a detailed comparison with FEM analysis is carried out to check its validity. Then, some
useful results are obtained, including a very simple expression for the effective moduli of composites with
inhomogeneous interphases for most practical cases.

2. Two-phase composites

Some notations and useful results for two-phase composites are first introduced that will be used
throughout the study. Besides, the isotropic and transversely isotropic situations are considered for the
cases associated with spherical particles and unidirectional and continuous fibers, respectively. Therefore,
the bulk and shear moduli denoted as K and G can be chosen to characterize the material properties for the
case of particles; whereas the longitudinal Young’s modulus, major Poisson’s ratio, axial shear modulus,
plane-strain bulk modulus, and transverse shear modulus denoted as Eyi, vy, Gia, Kos, Ga; by taking di-
rection 1 as the symmetry axis are chosen for the case of fibers. The superscripts m, f or i will be used to
designate the properties corresponding to matrix, fiber/particle or interphase in terms of the context. As the
effective longitudinal Young’s modulus and major Poisson’s ratio of the concerned composites can be
satisfactorily predicted by the law of mixtures, the focus is put on the five other moduli including K and G
for particle-reinforced composites and Gy, Kj3, G; for fiber-reinforced ones. The five effective elastic
moduli will be uniformly treated in the study.
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2.1. The strain energy changes of an infinite matrix

The strain energy changes of an infinite matrix due to the presence of one single spherical particle or
continuous cylindrical fiber are first analyzed as a basic problem. Corresponding to the five moduli, i.e., K,
G, G1», Ky, Gy, the five far-field stress systems are considered as follows:

ol =05=035=0 (1a)
05 =0% =0 (1b)
e (1e)
o5 = a5 =0, o that leads to plane strain condition (1d)
05 =0% =0 (Le)

where the other stress components vanish. In terms of Eshelby’s method (1957), the five strain energy
changes Afc of the infinite matrix subjected to the five far-field stress systems can be uniformly given as

1_.(0) cr—cm
Afe=—=VE2
Je= =3V om ony o (CF — Cm)

(2)

where C and V' denote one of the five moduli, i.e., K, G, Gy,, K»3, Ga3, and the volume of the particle or that
of the fiber per length, and the parameter o corresponding to the five cases is given by

m L+
EETF ) (32)
o 8—10v"
"6 =151 - ym) (30)
ag, =2 (3¢)
mo_ 1 (3d)
o T o1 —m)
o 3 — 4V (3¢)

T

2.2. The generalized non-interacting solution

Shen and Yi (2001) have proposed a different energy balance equation from the traditional one and
derived the generalized non-interacting solution for effective moduli of composites containing ellipsoidal
inhomogeneities, which coincides with the Mori-Tanaka solution (Weng, 1984, 1990) for the case of cir-
cular (2-D) or spherical (3-D) inhomogeneities. By considering the notations in (3a—e), the generalized
non-interacting solution for the effective moduli of two-phase composites corresponding to the present
concerned five cases can be uniformly written as

c-cm _ 4 cr—cm
Cm 4 om(C—Cm) O™+ o (CT— Cm)

)
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C
- (5)
where C and ¢ denote the effective moduli and volume fraction of spherical particles or unidirectional
continuous fibers. Note that the left side of (4) is associated with the strain energy change of an infinite
matrix due to the presence of a spherical/cylindrical RVE of composites, and the right side is associated
with that of particles/fibers with volume fraction being ¢ when neglecting the interactions among these
particles/fibers.

3. Composites involving an inhomogeneous interphase
3.1. An extension of the replacement method

The replacement method (see Hill, 1964; Hashin, 1972; Qiu and Weng, 1991) has been used to find the
effective moduli such as K or Eyj, V15, G5, K3 of the particle or fiber-reinforced composites with an in-
terphase that can be homogeneous or multi-layered. For the two complicated cases of G and Ga;, one
usually finds them by solving the corresponding elasticity problems (Hashin, 1972; Qiu and Weng, 1991).
For the continuously varying interphase properties, one also needs to find each effective modulus by solving
their corresponding elasticity problems. For example, Jasiuk and Kouider (1993) obtained G», K»3, G»3 by
numerically solving the coupled differential equations governing the displacements of the elasticity problem.
Lutz and Zimmerman (1996) gave a series form of solution for K by solving the radially symmetric problem
of an infinite body containing a composite sphere. It can be seen that these approaches are very compli-
cated. Besides, the analytical or numerical results for the more complicated case of an infinite matrix
containing one single composite sphere with a varying interphase has not been reported when it is subjected
to shear boundary stresses.

In this study, the replacement method is extended to the case of varying interphase properties, as well as
the two complicated cases of G and G»3, based on the generalized non-interacting solution (5).

A particle/fiber together with its surrounding interphase is called a composite sphere/cylinder. It is as-
sumed that there exists a homogeneous particle or fiber with the same size that induces the same strain
energy change of the infinite matrix as that induced by the composite sphere/cylinder. Let C*" denote the
corresponding elastic properties of the effective homogeneous particle/fiber that will be exactly or ap-
proximately obtained by extending the replacement method.

Let ry and | denote the radii of the particle/fiber and the composite sphere/cylinder, respectively, and
C°(r) be the effective properties of the composite sphere/cylinder with radius » € [ry, 7). When considering
a small incremental layer of the interphase from r to » + dr, and assuming the small layer as a homogeneous
layer with properties being C'(r + 0dr) (where 0 is an arbitrary fraction, 0 € [0,1]) and the surrounded
composite sphere in the small layer as an effective homogeneous particle/fiber with CT(r), the effective
properties of the composite sphere/cylinder with radius » + dr is obtained using the two-phase formulas (5)
as follows:

¢Cl(r + 0dr)
Ci(r+ 0dr)/[C(r) — Ci(r + 0dr)] + (1 — ¢)al.(r + 0dr)

CM(r 4 dr) = C'(r + 0dr) + (6)

where ¢ is the volume fraction of the composite sphere/cylinder with radius » € [ry, 7] when considering the
small layer as matrix, i.., ¢ = r3/(r + dr)’ for the case of a composite sphere or ¢ = r2/(r + dr)” for the
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case of a composite cylinder. Then, considering the limiting procedure of dr approaching zero, a governing
differential equation for C*(r) is derived as

dce(r) m off i % (7) ¢ etr i0.012

=21 - con+ E S i) - o )
where m = 3 (or 2) for the case of a composite sphere (or cylinder), and the initial condition of (7) can be
given as C*(ry) = CT.

3.2. The strain energy changes of an infinite matrix

Due to the presence of a composite sphere/cylinder, the strain energy changes Afc of an infinite matrix
that is subjected to the five far-field stress systems respectively can be obtained by replacing the composite
sphere/cylinder with the effective homogeneous particle/fiber whose properties are given by the differential
equation (7),

1 ¢ (0%) C(r) —C™

Afe=—=V
=3V "¢cn C™ 4 o2 [CeMT (ry) — Cm]

&)

Note that (8) is exact for Afk, Afk,, and Afg,, since the replacement method is exact for any layered in-
terphases for these cases. But it is not exact for Af; and Afg,,. Therefore, its validity needs to be verified for
these two cases.

3.3. Comparing with FEM results

For simplicity, the strain energy changes for the cases corresponding to the plane-strain bulk modulus
and transverse shear modulus of the composite cylinder are now analyzed using FEM and compared with
the present model. The analysis for the case of plane-strain bulk modulus may be used as a double check
between the FEM model and the exact solution. The relatively thick interphase (the radii of the fiber and
the composite cylinder are y = 0.8 and r, = 1) is chosen to illustrate problems better. The plane strain
problems of an infinite matrix containing a composite cylinder subjected to the far-field hydrostatic stresses
with ¢35 = 055 = 1 and 153 = 0 and the far-field tension—compression stresses with 55 =1, ¢35 = —1 and
To3 = 0 (pure shear) are analyzed using FEM.

The Poisson’s ratios of all constituents are taken as 0.25 in the comparison examples, and the transverse
Young’s modulus variation of the inhomogeneous interphase E%.(r) is described as

EiT(r):l—D[rl_r]Q 9)

EIP ry —ro

where ET is the transverse Young’s modulus of the matrix, D and Q are material parameters. It is noted that
D = [E\(ry) — ER]/E™ is similar to the damage parameter in the interphase variation model by Lutz and
Zimmerman (1996). Figs. 1-4 plot some typical examples of the interphase variation model, in which a
harder fiber with Ef./E? = 10 and a softer fiber with Ef/ET = 0.2 are considered. These material combi-
nations of matrix, fiber and interphase will be analyzed using FEM and compared with the present ana-
Iytical model (7) and (8).

An infinite matrix containing one composite cylinder with the interphase variations shown in Figs. 1-4 is
analyzed using FEM. As the strain energy changes Af,, and Afg,, are just concerned, the problem can be
modeled as a plane strain problem. As it is impossible to simulate an infinite matrix using FEM, a sufficient
large square, say 20 times larger than the centered composite cylinder, is considered to approximate the
infinite matrix. The inhomogeneous interphase is approximated as 20 homogeneous layers in the finite
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Fig. 1. Linear variations of normalized Young’s modulus of interphase with material parameter Q = 1 and various D for a harder
particle/fiber.

12
10 k..
" N
s — e B
AR
B s vt Interphase 1: D=-9, Q=0.2 !_\‘.‘ NS
% """ = Interphase 2: D=-9, Q=05 '\ ‘.‘ ‘.\
o Interphase 3: D=-9, Q=1 i_\\ [
>8_ 6T —=—= Interphase 4: D=-9, Q=2 ‘!\‘-‘ ‘.‘ :
3 | 0 Interphase 5: D=-9, Q=5 R :
X = = Matrix ‘ \ Vb
g af \
S LA
< P\ e
Lo\
2r VoA
NN
0.0 0.2 04 0.6 0.8 1.0 1.2

r

Fig. 2. Variations of normalized Young’s modulus of interphase between matrix and fiber for a harder particle/fiber.

element model, and the transverse Young’s modulus of each layer is taken as the average value of the
corresponding inhomogeneous layer. It has been checked by comparing with more layers that 20 layers are
sufficient to get convergent values when the relative error is set at 1%.
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Fig. 3. Variations of normalized Young’s modulus of interphase between matrix and particle/fiber for a softer particle/fiber.
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Fig. 4. Linear variations of normalized Young’s modulus of interphase which are harder than the matrix and the particle/fiber.

Furthermore, the variations of the strain energy change Afx,, and Afg,, with the material parameter D
and Q corresponding to the material combinations shown in Figs. 1-4 are solved using the present model,
i.e., (7) and (8). These analytical results are plotted in Figs. 5-8 together with the FEM results, in which the
Afx,, and Afg,, have been normalized by Afgo, which is the strain energy change when the material
properties of the interphase are taken as those of the matrix, that is
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Fig. 5. Comparisons of strain energy changes between the predictions by the present model and the FEM results for the material
combinations shown in Fig. 1.
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Fig. 6. Comparisons of strain energy changes between the predictions by the present model and the FEM results for the material
combinations shown in Fig. 2.
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It is seen from Figs. 5-8 that the FEM results are precisely consistent with the present model for the
transverse bulk modulus. Thus, the FEM model, including its meshes and the interphase material model
where the inhomogeneous interphase is approximated by 20 homogeneous layers, can be assumed valid.
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Fig. 7. Comparisons of strain energy changes between the predictions by the present model and the FEM results for the material
combinations shown in Fig. 3.
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Fig. 8. Comparisons of strain energy changes between the predictions by the present model and the FEM results for the material
combinations shown in Fig. 4.

For the case of the transverse shear modulus, the validity of the present model is dependent on the
material properties of matrix, inclusion and interphase. For a rather damaged interphase with the damage
parameter D = 0.8, the present model can still lead to satisfactory results, as shown in Fig. 5 in which the
result of Afg,, based on the present method is 0.521, while the FEM gives 0.561. Their relative difference is
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7.7%. And if the Young’s modulus of an interphase lies between the fiber and matrix, the present model is
very accurate, as shown in Figs. 6 and 7. However, the model is not satisfactory for the material combi-
nations with a softer fiber and harder interphase, as shown in Figs. 4 and 8. Therefore, the validity of the
present model is limited to the kinds of material combinations shown in Figs. 1-3.

4. Effect of interactions among composite cylinders

The present model is exact or rather accurate for the single inclusion problems. Besides, it is exact for the
moduli (except the two shear cases) of the ideal composite that is a collection of composite spheres/cylinders
that progressively fill all the space. However, the model is not exact for practical composites when the
interaction effects among composite spheres/cylinders take place, even for the case of bulk moduli.
Therefore, its validity needs to be investigated further. For this purpose, the plane strain problem of an
infinite matrix containing two composite cylinders and the composites with equilateral triangular distri-
bution of composite cylinders are studied.

4.1. An infinite matrix containing two composite cylinders

The three typical material combinations are taken, i.e., E%/Em =10, D=-9, 0=1; E%/E‘"n =0.2,
D=0.8,0=1;and E5/E™ = 10, D = 0.8, O = 1 as shown by the interphase 1 in Fig. 1; the interphase 3 in
Fig. 3; and the interphase 5 in Fig. 1, respectively. The radii of fiber and composite cylinder are still 0.8 and
1. The two far-field stresses are hydrostatic stress with g, = g33 = 1 and 7,3 = 0 and the tension—com-
pression stresses with oy = 1, 33 = —1 and 753 = 0. The centers of the two composite cylinders are located
along the direction 3. The space between the two composite cylinders is set at 1% of their diameter, i.c., the
distance of the two centers is 2.02. Due to the symmetry, a quarter of model can be used in FEM analysis, in
which 200 nodes are set along the half peripheral of the composite cylinder and the inhomogeneous in-
terphase is also approximated as 20 homogeneous layers. The relative errors have been controlled smaller
than 1% comparing with finer meshes.

The corresponding problems by replacing the two composite cylinders with the two effective homo-
geneous fibers are also analyzed using FEM based on the same mesh for the comparison. The normalized
strain energy changes Afx,, and Afg,, per composite cylinder or effective fiber are listed in Table 1.

It is seen from Table 1 that the present model is still rather accurate for the material combinations 1 and
2, i.e., the cases that the Young’s modulus of interphase lies between those of fiber and matrix. But for the
material combination 3, the relative differences due to the replacement are —12.0% and 15.4% for Afy,, and
Afs,,, while they are zero and 7.7% for the case of one single composite cylinder. Note that the small space

Table 1
Comparisons between the strain energy changes due to two composite cylinders (CC) and two corresponding effective homogeneous
fibers (EF)

Af/Af6o Afe/Afco

CcC EF (CC — EF)/EF (%) CcC EF (CC — EF)/EF (%)
Material combination 1: E;/E”’ =10,D=-9 0=1

0.762 0.755 0.9 1.637 1.606 1.9

Material combination 2: EyJE" =02, D=0.8, 0 =1
0.643 0.639 0.6 1.197 1.212 -1.2

Material combination 3: Ey/E" =10, D =108, 0 =1
0.257 0.292 -12.0 0.614 0.532 154
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Fig. 9. FEM mesh of a unit cell where the radius of fiber, the thickness of interphase and the distance between the composite cylinders
are 1, 0.2 and 0.2 (the volume fraction of the composite cylinders is 0.773 or that of fiber is 0.537).

between the two composite cylinders has been taken in the calculation example to illustrate the problem
better. It is believed that the relative differences will be closer to those of one composite cylinder when the
space between the composite cylinders becomes larger. Therefore, it can be assumed that the replacement is
approximately acceptable for practical composites with the material combination 3 when the interaction
effects among composite cylinders take place.

4.2. Equilateral triangular distribution of composite cylinders

The composite with equilateral triangular distribution of cylinders is taken to verify the validity of the
present model further. Fig. 9 shows the FEM mesh of a unit cell, where the radius of fiber, the thickness of
interphase and the distance between the composite cylinders are 1, 0.2 and 0.2, respectively. Thus, the
volume fraction of the composite cylinders is 0.773 or that of fiber is 0.537 for the example. The previous
three material combinations are considered again. Besides, the two composites designated as material
combinations 4 and 5 that have been analyzed by Jasiuk and Kouider (1993), i.e., the glass/epoxy composite
with elastic properties E™ = 3.4 GPa, v = 0.38; Ef = 69.0 GPa, v/ = 0.20 and the graphite/epoxy com-
posite with elastic properties E™ = 3.5 GPa, v" = 0.35; E' = 14.0 GPa, v/ = 0.20 are also considered. In
terms of the interphase model of Jasiuk and Kouider (1993), the interphase Young’s modulus and Poisson’s
ratio are given by E'(r) = Pr¢ where P and Q are determined by assuming that the Young’s modulus of
interphase changes from that of matrix to that of fiber and v\ = (v™ + ) /2.

The effective plane strain bulk and transverse shear moduli for the five material combinations are ob-
tained using FEM to analyze the unit cell. It is seen from the results listed in Table 2 that the present model
is very satisfactory.

5. Effective moduli
5.1. Simple expressions for effective moduli
In terms of the generalized non-interacting solution to account for the presence of other particles

or fibers, the effective moduli K, G or Gy, K»3, Gy of particle or fiber-reinforced composites with an
inhomogeneous interphase can be uniformly evaluated as
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Table 2

Normalized effective moduli of the composites with equilateral triangular distribution of composite cylinders and effective fibers for the
five material combinations (MC)

MC Plane strain bulk modulus Transverse shear modulus
CC EF (CC—-EF)/EF (%) CC EF (CC — EF)/EF (%)
1 3.660 3.671 -0.3 3.688 3.642 1.3
2 0.389 0.388 0.3 0.373 0.379 -1.6
3 1.661 1.662 -0.1 1.710 1.665 2.7
4 2.697 2.708 -0.4 4.679 4.530 3.3
5 1.609 1.580 1.8 2.414 2.400 0.6
C
=1+ ¢ (11a)
e e /[Cet(ry) — ™ + (1 = ¢)og
dCet(r) m : ok (r) 4
— = et - ¢ et (1) — C'()]F s with C () = C* 11b
T = CT0) ~ CON ETICT) - O] () (11b)

Furthermore, the effective longitudinal Young’s modulus and major Poisson’s ratio are also given based on
the procedure of the present model and the rule of mixtures, that is,

E; = ¢Eﬁf + (1 = ¢)EY (12a)
T Y i r(% £

Bl =~ | 2B, (dr+ 3, (12b)
1 Jry 1

v = @) + (1= ) (13a)

ar L [T r(% f

i =5 2rvi, () errr—zv12 (13b)
1 Jny 1

where ¢ is the volume fraction of composite spheres/cylinders.
5.2. Comparing with existing models

5.2.1. Comparing with the model of Lutz and Zimmerman (1996 )

Lutz and Zimmerman (1996) analyzed the bulk modulus of spherical particle-reinforced composites with
the elastic moduli continuously varying with radius throughout the entire region outside the particle. By
solving the radially symmetric problem of an infinite body containing a spherical particle and using the
Mori-Tanaka method (Mori and Tanaka, 1973) to consider the presence of other particles, they gave a
series solution for the effective bulk modulus. In their calculated example, the Poisson’s ratios of all con-
stituents are taken as 0.25, the normalized Young’s modulus of particles is EP/E™ = 5, and that of inter-
phase region is expressed as

Ei(r)_l_D<L>ﬂ (14)

Em

For the case of § = 10 and various damage parameter D from —0.75 to 0.75, they plotted the effective bulk
modulus variation with the volume fraction of particles.
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For the case in which no clear interphase between interface zone and matrix exists, an alternative form of
the present solution (11a) can be used, that is,

C 1 20CMAfC/ o (15)
cm 1+ 2¢002 C™Afc/ Vo
with
I 1 () —Cm
Afe=— () (16)

Sy
20 CmC™ + o (Cf (ry) — C™)

where ¢, is the volume fraction of the particles or fibers, }; and V" are the volumes of one particle/fiber and
one composite sphere/cylinder, and Afc is the strain energy change of the infinite matrix subjected to the
far-field unit stresses corresponding to the modulus C due to the presence of one particle or fiber with the
surrounding interphase zone; r,, should be sufficiently large to achieve the convergent Afc. Note that
¢ = ¢V /¥ and (11a) can be recovered by substituting (16) into (15). The alternative form of (15) and (16)
is convenient for those interphase regions that do not have a clear terminal in the matrix, such as the in-
terphase variation model introduced by Lutz and Zimmerman (1996). The effective bulk modulus is solved
using (11b), (15) and (16) for the example and plotted in Fig. 10. It is seen that the present results in Fig. 10
for the effective bulk modulus are precisely consistent with those in Fig. 4 of Lutz and Zimmerman (1996),
as expected. Besides, the effective shear modulus is similarly obtained and plotted in Fig. 11. Note that it is
very difficult to find out the effective shear modulus by solving the corresponding elastic problem as done by
Lutz and Zimmerman (1996) for the case of effective bulk modulus.

5.2.2. Comparing with the results of Jasiuk and Kouider (1993)

Jasiuk and Kouider (1993) considered the two inetrphase variation models for unidirectional fiber re-
inforced composites, i.e., the power variation E'(r) = Pr¢ with constant Poisson’s ratio, and the linear
variation E'(r) = Pr+ Q, vi(r) = Sr+ T, where P, O, S and T are constants that are determined by the

3.0

Normalized effective bulk modulus K/K™
N
o

e
o

=
wn

1.0

Fig. 10. Effective bulk modulus predicted by the present model coincides with those by Lutz and Zimmerman’s model (1996).
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Fig. 11. Effective shear modulus predicted by the present model for the composite with the interphase variation by Lutz and
Zimmerman (1996).

elastic properties at two ends of interphase zone. In their numerical examples, these constants are deter-
mined by assuming that the properties of interphase change from those of matrix to those of fiber.

Jasiuk and Kouider (1993) obtained the effective moduli by numerically solving the complicated
governing differential equation for the elastic problem of inhomogeneous isotropic material with properties
changing radially. They used the generalized self-consistent method (Christensen and Lo, 1979) to account
for the presence of other composite cylinder for the effective transverse shear modulus, and the composite
cylinder assemblage model (Hashin and Rosen, 1964) for other moduli.

The cases of plane strain bulk and transverse shear moduli are now taken to compare with the present
model. The graphite/epoxy composite with elastic properties £™ = 3.5 GPa, v" = 0.35, Ef = 14.0 GPa,
vi- = 0.20 (Sottos et al., 1989) for the effective transverse shear modulus and the glass/epoxy composite with
elastic properties E™ = 3.4 GPa, v" = 0.38, Ef = 69.0 GPa, v/ = 0.20 for the effective plane strain bulk
modulus were considered in Jasiuk and Kouider’s calculated examples. Besides, the Young’s modulus and
Poisson’s ratio of interphase were assumed as the power variation changing from that of the fiber to that of
the matrix and the average of those of fiber and matrix, respectively. The normalized thickness of inter-
phase, i.e., the ratio of interphase thickness and the radius of fiber, was taken as 0.1 and 0.2, respectively.

In terms of the present model, the composite cylinder is first assumed as an effective homogeneous fiber
such that its elastic properties in transverse plane are determined using (11b). The transverse Young’s
modulus and Poisson’s ratio can be derived from the plane strain bulk and transverse shear moduli. For the
two interphase thicknesses, i.e., 0.1 and 0.2, they are solved as EST = 11.974 GPa, v = 0.220 and
EST =10.651 GPa, T = 0.232 corresponding to the graphite/epoxy composite, and EST = 40.446 GPa,
vl =0.239 and ES" = 29.640 GPa, v{" = 0.253 corresponding to the glass/epoxy composite. Then, the
effective plane strain bulk modulus of the composites is obtained using (11a), i.e., the Mori-Tanaka
method, which is equivalent to the composite cylinders assemblage-method of Hashin and Rosen (1964).
To compare with Jasiuk and Kouider’s results for the effective transverse shear modulus, instead of using
(11a), the generalized self-consistent method (Christensen and Lo, 1979) is adopted.
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It is expected that Jasiuk and Kouider’s results and the present ones should be precisely consistent for the
prediction of the effective bulk modulus and very agreeable to each other for the prediction of the transverse

6T MC 4, t= 0.2, present model /
————— MC4,t= 0.1, present model !

L4 MC 4, t= 0.2, FEM for atriangular distribution /
""""" MC 4, t= 0.2, Jasiukand K ouider (1993) !

0 . . . .
00 0.2 04 0.6 0.8

o

Fig. 12. Effective plane-strain bulk modulus predicted by the present model for the same case of material combination and geometries
as done by Jasiuk and Kouider (1993).

5
MCS5, t= 0.2, present model
————— MC5, t= 0.1, present model
4 b MC 5,t= 0.2, FEM for atriangular distribution”

---------- MC 5, T = 0.2, Jasiukand Kouider (1993) .-~

0 . . . .
00 02 04 06 0.8

o

Fig. 13. Effective in-plane shear modulus predicted by the present model for the same case of material combination and geometries as
done by Jasiuk and Kouider (1993).
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shear modulus. However, the differences of the results predicted by the two models are significant, as shown
in Figs. 12 and 13. For the effective plane strain bulk modulus, the present result is slightly higher than that
of Jasiuk and Kouider, but for the effective transverse shear modulus, the present result is much lower than
that of Jasiuk and Kouider. For a further verification, the effective moduli associated with equilateral
triangular distribution of composite cylinders predicted by FEM, as listed in Table 2 are also plotted in
Figs. 12 and 13. It is seen that FEM results support the present model. Besides, for the last points in the
curves, the volume fraction of fibers is 0.6944 that corresponds to the volume fraction 1 of composite
cylinders. Note that the normalized transverse shear modulus of fibers is 4.5, while the last point of Jasiuk
and Kouider is about 4.3. This means that Jasiuk and Kouider’s results are close to the results when the
interphase properties are taken the same as those of the fibers. As Jasiuk and Kouider’s approach is very
complicated and troublesome, it is difficult to verify their calculation.

6. Summary

The replacement method (Hill, 1964) is extended to evaluate effective elastic moduli of composites re-
inforced by spherical particles or continuous cylindrical fibers, which involve an inhomogeneous interphase.
The present model is highlighted by the independent governing differential equations for each modulus of
the effective particle/fiber that is used to replace the composite sphere/cylinder, i.e., the particle/fiber to-
gether with its surrounding interphase. Then, the simple expressions for the effective elastic moduli are
obtained by combining the governing differential equations with the Mori-Tanaka solution or the gene-
ralized non-interacting solution. The validity of the present model is verified by comparing with FEM
results and some existing models, which are based on very complicated but rigorous derivations. It is re-
vealed that the present model is rather accurate when the interphase properties vary between those of fiber
and matrix. But it is not satisfactory when the interphase is much harder than the matrix and the particle/
fiber. To be able to understand the reason of such a difference due to the range of the interphase properties
with respect to that of the matrix and the particle/fiber, further study needs to be conducted.
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